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Abstract. In New Zealand (NZ), agriculture is an essential industry, Kiwifruits 

contribute significantly to the country’s overall exports. Traditionally Kiwifruits 

require manually picking up and heavily relies on human resources, which result 

in Kiwifruit yields often being affected by human labours. With the rapid 

development of deep learning in agriculture, agricultural automation has become 

an efftive way for the industry. Accurate and fast Kiwifruit detection can 

accelerate the process in the industry. In this paper, we propose an improved 

Kiwifruit detection model based on YOLOv7. We collected digital images from 

natural Kiwifruit orchards and produced a manually labelled, data-augumented 

Kiwifruit image dataset. We add the attention module to YOLOv7 and increase 

the weight of visual features while suppressing the weight of invalid features. 

The results show that our proposed method has higher detection accuracy than 

the original YOLOv7 model, while the detection speed is sufficient for real-time 

usage. The results of our experiments provide a technical reference for automated 

picking in modern Kiwifruit supply chain. 

Keywords: Deep learning  YOLOv7  Attention mechanism  Real-time 

detection  CBAM. 

1 Introduction 

Kiwifruits appeare in worldwide markets and have become one of the most iconic 

namecards of New Zealand [5]. However, the rapidly growing industry has also brought 

significant challenges, including labor shortages that have led to industry losses. 

Therefore, developing an efficient supply chain related to picking, sorting, cleaning, 

and packaging is an effective way to improve efficiency in the current Kiwifruit 

industry. We are use of the state-of-the-art artificial intelligence, in particular, deep 

learning, to increase the Kiwifruit yield estimation, improve picking efficiency and 

reduce the costs of human labors [18]. 

Fast and accurate models are the foundation of Kiwifruit counting [1]. Traditionally, 

fruit detection algorithms [9] [19] [36] extracted key feature parameters such as color 

and shape of visual objects through digital image processing. The image segmentation 

algorithms are harnessed in order to detect the visual objects. However, the 

conventional algorithms are less robust. The factors such as lighting conditions and 

fruit location affected the results of the model detection. Therefore, the practicality of 

fruit yelds estimation in orchards under natural conditions is low. 
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However, recent advances in deep learning [10] and computer vision [34] have 

combined more fields with artificial intelligence and computer vision [22] [25]. Mainly, 

digital image processing based on deep learning has been extensively applied to modern 

agriculture, such as plant pest control, fruit ripeness detection [33], and fruit freshness 

grading [6].  

Visual object detection has been conducted based on deep learning [20] [21]. Wang 

and Yan proved that the one-stage YOLOv5 algorithm outperformed the two-stage 

Faster R-CNN algorithm in the leaf detection task through comparative experiments, 

especially in the speed of object detection [30]. Bazame et al. proposed the best-

performing YOLOv4-based algorithm for detecting and classifying coffee beans on tree 

branches by comparing YOLOv3, YOLO4 and YOLOv4-tiny algorithms [2]. The mAP 

of the model is 81%. Lawal propounded an accurate and fast algorithm for fruit 

detection-YOLOMuskmelon, which combines the ReLU-activated ResNet-43 

Backbone with residual block alignment, SPP, CIoU loss, FPN, and DIoU-NMS to 

improve detection performance, the average accuracy of this model is 89.6% [13]. Liu 

et al. put forward SE-Mask R-CNN algorithm for detecting apples in complex 

environments [15]. The method improves the resource allocation of the model to the 

effective feature maps by adding SENet to the backbone network. Liu et al. offered 

TomatoDet [14], an anchorless frame algorithm for tomato detection, which was 

applied to solve the detection of tomatoes under complex environmental conditions, 

such as uneven lighting, leaf or branch occlusion, and overlap between fruits. The 

algorithm incorporates an attention mechanism in CenterNet and introduces a circular 

representation to optimize the detector. The average precision of this algorithm is 

98.16%. Jilbert et al. proffered an algorithm based on the YOLOv5 model for detecting 

coconut fruits using UAVs [12]. The accuracy of this algorithm is 88.4%. The mAP of 

the improved model is improved by 3.5%, and the model size is compressed by 62.77%. 

Although a plethora of studies have obtained better model performance, with the rapid 

development of deep learning, the better performing YOLOv7 [28] algorithm can 

obtain more accurate results under faster conditions.  

Kiwifruit detection based on deep learning algorithm proposed in this paper is 

accurate, fast, and is able to be generalized to accommodate the complex conditions in 

natural orchards. The algorithm for visual object detection is based on the YOLOv7 

model, the one-stage object detection algorithm does not need to generate candidate 

frames. This algorithm directly converts the problem of visual object localization into 

a regression problem. Therefore, YOLO model is superior to computing speed, this fast 

detection capability can be better applied to visual object detection. 

In this paper, we propose an improved YOLOv7 algorithm combined with the 

Convolutional Block Attention Module (CBAM) [32]. This method is able to improve 

the detection accuracy of small, overlapping, and multiple Kiwifruits. A CBAM module 

is added to the backbone of YOLOv7 network and assign weights to channel features 

and spatial features in the feature map to increase the model sensitivity while reducing 

attention to invalid features, thereby improving the model's detection of Kiwifruit in 

orchards. In this paper, we also have other contributions: (1) We created a new 

Kiwifruit dataset, (2) conducted data augmentation, (3) verified our YOLOv7 model by 

using ablation experiments. 
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This paper is organized as follows: In Section 2, we introduce the related work, our 

method is detailed in Section 3, our results are demonstrated in Section 4. In Section 5, 

we conclude this paper and envision our future work. 

 

Fig. 1. YOLOv7 neural network architecture. 

2 Related Work 

2.1 YOLOv7 

Visual object detection is a computer vision problem that locates and labels visual 

objects by drawing a bounding box around the object, and determines the class label to 

which the given box belongs to. Visual object detection is an important research topic 

in computer vision and broadly employed to the areas such as face recognition, car plate 
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number recognition, intelligent transportation and autonomous vehicles. The YOLO 

family has witnessed visual object detection in the era of deep learning. Since the 

publication of YOLOv1 [23] in 2015, YOLO has been updated iteratively. The 

lightweight and high accuracy of YOLO models have set the benchmark for the state-

of-the-art methods of visual object detection. 

YOLOv4 [3], Scaled-YOLOv4 [27], and YOLOR [29] were proposed in 2020 and 

2021. The latest object detection model - YOLOv7 [28] was proffered in 2022. It 

outperforms most of well-known object detectors such as R-CNN [8], YOLOv4 [3], 

YOLOR [29], YOLOv5, YOLOX [7], PPYOLO [17], and DETR [4] etc. YOLOv7 

reduces about 40% of the number of parameters and 50% of the computational costs of 

real-time object detection. It is split into two main areas of optimization: Model 

architecture optimization and training process optimization. YOLOv4 improved the 

accuracy at the cost of training but did not increase inference cost [28]. However, 

YOLOv7 takes use of a re-parameterized approach to replace the original modules. It 

adopts dynamic label assignment, which has the effect of assigning labels to output 

layers more efficiently [37]. The YOLOv7 structure is similar to YOLOv5, the main 

improvement is the replacement of internal components of the network structure.  

Fig.1 shows the overall structure of YOLOv7. In Fig.1, we see that YOLOv7 consists 

of three components: Input, backbone, and head. The backbone layer extracts feature 

maps, the head layer is employed for prediction. As shown in Fig.1, firstly the processed 

image is input into the backbone network in YOLOv7, a feature map is output with 

three layers of different sizes through the head layer network, and finally the prediction 

result is exported through Rep convolution and Imp convolution. 

2.2 Attention Mechanism 

Attention mechanisms [26] have made significant achievements in image processing in 

recent years. The essence of attention mechanism is to detect the information which is 

interested and suppressed the useless information. Three main attention mechanisms 

are based on how weights are applied to feature spatial and channel: Spatial attention 

mechanisms [38], channel attention mechanisms [11], mixed spatial and channel 

attention mechanisms [24]. The attention mechanisms have different effects on 

different computer vision tasks. 

Squeeze-and-Excitation Network (SENet) [11] is a channel-based attention model 

that models the importance of each feature channel and then enhances or suppresses 

different channels for different tasks. A bypass branch is branched out after the regular 

convolution operation. Firstly, the squeeze operation is performed, compressing the 

spatial dimension with features so that each 2D feature map becomes an actual number, 

and the number of feature channels remains unchanged. Then the excitation operation 

generates weights for each feature channel, which is applied to show the correlation 

between the modelled feature channels. Once the model gets the weights for each 

feature channel, it can show the importance of different channels by applying that 

weight to each original feature channel. The model achieves a more significant 

performance improvement with a minor increase in computation. Efficient Channel 

Attention Net (ECA-Net) [31] improved on the SENet module. The module indicates a 
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way for local cross-channel interaction without dimensionality reduction, which 

effectively avoids the effect of dimensionality reduction on the learning effect of 

channel attention. The experimental results show that ECA-Net has low complexity 

while obtaining excellent performance. 

Convolutional Block Attention Module (CBAM) [27] is a simple and effective 

attention module for feedforward convolutional neural networks that connects the 

spatial attention module after the channel attention module. The CBAM structure is 

shown in Fig.2. The focus of spatial attention is on the position of objects in the image, 

while channel attention focuses on the objects in the image. Instead of using a single 

maximum pooling or average pooling, the attention module harnesses the summation 

or stacking of the maximum and average pooling.  

 

 

Fig. 2. The main structure of convolutional block attention module. 

    The channel attention module structure is shown in Fig.3. The input feature maps are 

subjected to global max pooling and global average pooling based on width and height 

respectively to obtain two 1×1×C feature maps, which are then fed into a two-layer 

MLP with the number of neurons in the first layer as C/r, where r is the reduction rate 

and the activation function as ReLU, the number of neurons in the second layer is C. 

This two-layer neural network is shared. The channel attention feature and the input 

feature map are multiplied elementwise to generate the final channel attention feature. 

Finally, the input features are multiplied elementwise to generate the input features 

required by the spatial attention module. 

The spatial attention module structure is shown in Fig.4. The feature map output 

from the channel attention module is employed as the input feature map. The module 

firstly conducts channel-based global max pooling and global average pooling to obtain 

two feature maps. A concatenation operation (channel splicing) is undergone on the 

two feature maps based on the channels. A convolution is then performed to reduce the 

dimensionality to one channel. Then it goes through a sigmoid to generate a spatial 

attention feature. 

Finally, the feature is multiplied by the input feature of the module to obtain the final 

generated feature. The module is shown to provide improvements in both classification 

and detection performance. 
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Fig. 3. The structure of channel attention module.  

 

Fig. 4. The structure of spatial attention module.  

 

Fig. 5. The image dataset labeled on Roboflow. 
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3 Our Methods 

3.1 Dataset 

Data Collection. There is not publicly labelled dataset available for Kiwifruits. In this 

paper, two methods were employed to collect the Kiwifruit dataset. Firstly, we collected 

digital images of natural Kiwifruits from Google Images. Secondly, we retrieved and 

downloaded videos of Kiwifruits from YouTube, we split the video into frames. We 

collected 117 images of Kiwifruits. 

Data Preprocessing. We manually took out the duplicate images and images without 

Kiwifruits to reduce redundancy with model training. YOLOv7 provides Roboflow 

tool, which can label the images and automatically export the custom dataset. 

Therefore, we uploaded the filtered images to Roboflow for manually labelling, there 

are 7,114 labels in this dataset. The labelling results are shown in Fig.5. 

    In order to reduce the training time and improve the model performance, we collected 

the images and resized them to the resolution 416416. We rotated the images in the 

training dataset clockwise and counterclockwise 90 degrees. The data augmentation 

increases the amount of data in the training dataset, maintains data diversity, and alters 

the distribution direction of Kiwifruits in the original images to improve the 

generalization of the trained model. After completed the data augmentation, we 

randomly split the dataset into a training set, a valid set, and a test set according to 

7:2:1. The training dataset was finally increased to 289 images, the image augmentation 

was confirmed to be correct by manual inspection. Fig.6 is an attribute visualization 

result of the augmented dataset. The number of labels in the dataset is shown in Fig.6 

(a), the location of the labels in the dataset is shown in Fig.6 (b), the width and height 

of the labels in the dataset are shown in Fig.6 (c). 

 

 

(a)                                   (b)                                     (c) 

Fig. 6. (a) The number and the class of labels in the dataset. (b) The location of the labels in the 

images of the dataset. (c)The size of the labels in the dataset. 

3.2 Modelling 

In this paper, we were use of a manually collected, preprocessed, and labelled Kiwifruit 

image samples. In this paper, a CBAM model was added to the front of the backbone 
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in YOLOv7 net to deal with the dense nature of objects, the high overlap rate and the 

small size of the objects in the Kiwifruit videos. The method improves the overall 

accuracy of the object detection model by integrating CBAM and YOLOv7 together to 

assign weights of channel features and spatial features of visual objects in the feature 

map, increase the attention to detect visual objects and suppresse attention to non-

objects. The structure of the improved model is shown in Fig.7. 

 

 

Fig. 7. The location of the CBAM in the improved model. 

As shown in Fig.7, a pre-processed image of size 4164163 is input into the 

backbone. The output feature map is firstly processed through the global max pooling 

and global average pooling in CBAM, then through a multilayer perceptron with shared 

weights, which conducts an addition operation based on the two feature maps through 

the sigmoid activation function. After the channel attention module is completed, the 

feature maps are input into the spatial attention module. The two feature maps are 

combined by using global max pooling and global average pooling. Then the number 

of channels is reduced to 7×7 convolution [29]. The sigmoid activation function obtains 

the spatial attention feature maps. Finally, the outputs of channel attention module and 

the spatial attention module are multiplied to obtain the output feature map of CBAM. 

The feature maps from the CBAM are fed into the CBS module in the original 
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Backbone, the final predictions are output to implement the object detection by the 

model. 

4 Our Results 

4.1 Evaluation Metrics for Kiwifruit Detection 

In this paper, we are use of precision (P), recall (R), and mean average precision (mAP) 

as the evaluation metrics for the Kiwifruit detection algorithm. The experimental results 

encapsulated four outcomes, True Positive (TP) refers to manually marked Kiwifruits 

being detected correctly, False Positive (FP) means the object that was incorrectly 

detected as a Kiwifruit, True Negative (TN) is to the negative samples with negative 

system prediction, and False Negative (FN) reflects to Kiwifruits that are missed. Two 

mAP indicators are employed in this paper, mAP@0.5 and mAP@0.95. mAP@0.5 

refers to the average precision of all images in each class if assigned IoU to 0.5, and 

then all classes are averaged. mAP@0.95 indicates to the average mAP over different 

IoU thresholds (from 0.5 to 0.95 with a step size of 0.05). Intersect over Union (IoU) 

reflects to the proportion of intersection and concatenation of the object prediction box 

and the true box.  

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

mAP=
1

𝑁
∑ ∫ 𝑃𝑑𝑅

1

0
𝑁
𝑖=1  (3) 

4.2 Experimental Environment and Training Parameters 

In this paper, the experiments were conducted in Google Collaboratory platform. We 

were use of Python 3.7 (version 3.7.14), Pytorch (version 1.12.1), and CUDA (version 

11.2) for the YOLOv7 training. The Tesla T4 (16G) GPU was utilized for the detection 

model training. The size of all images used for training in this experiment is 416416, 

batch-size is 16 and epochs are 150 times. 

4.3 Experimental Results and Comparisons 

The results of the improved model for the detection of Kiwifruits are shown in Fig.8, 

which shows that the model is better for detecting high density, overlapping objects and 

small objects. 

    In order to verify the effectiveness of the improved YOLOv7 model, we compared 

the original YOLOv7 model. We also compared the more popular YOLOv5s model. In 
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addition, we compared six improved YOLOv5s models. We took use of two models to 

insert three attention mechanisms, SE, ECA and CBAM, into different positions of the 

YOLOv5s model. In the first method, we inserted these three attention mechanisms in 

front of the SPFF module of Backbone in YOLOv5 model. We named the improved 

algorithm YOLOv5_SE, YOLOv5_ECA, and YOLOv5_CBAM. In the second 

method, we replaced these three attention mechanisms with the C3 module within 

Backbone in the original model and named it YOLOv5_C3SE, YOLOv5_C3ECA, and 

YOLOv5_C3CBAM. Fig.9 (a) shows the first method of inserting the attention module. 

Fig.9 (b) indicates the second method. The training parameters of the comparison 

experimental models are consistent. The results of the different models are compared 

in Table 1. 

 

Fig. 8. Test results using the improved model. 

    In Table 1, YOLOv7_CBAM model attained the best performance with the same 

experimental parameters. YOLOv7 and YOLOv7_CBAM models outperformed 

YOLOv5s and six attention mechanisms addition models based on YOLOv5s in the 

Kiwifruit detection experiments. The improved YOLOv7 model increased the precision 

by 1.1%, recall by 3.8%, the mAP@0 .5 value by 0.8% and the mAP@0.95 value by 

0.5% in comparison to the original YOLOv7 model. YOLOv5s model with the C3 

module, replaced by the attention mechanism, has the smallest size due to the small 

number of model layers and the small number of model parameters. We also see from 

Table 1 that the approach of adding the attention mechanism to the YOLO algorithm 

produced better performance than replacing the original CBS module. From the 

comparison, we see that the addition of CBAM can help YOLOv7 model to improve 

the performance of object detection, which affirms the effectiveness of the approach 

proposed in this paper. 
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(a)                                                                    (b) 

Fig. 9. (a) The method for inserting three attention mechanisms ahead of the SPFF module in the 

Backbone of the YOLOv5s algorithm. (b) The method for replacement of the C3 module in 

Backbone of YOLOv5s algorithm with three attention mechanisms. 

Table 1. Comparison of the improved model with other models.  

Model Precision Recall mAP@0.5 mAP@0.95 Model size 

YOlOv5s 92.2% 86.0% 94.1% 63.1% 14.3MB 

YOLOv5_SE 91.8% 87.7% 94.3% 61.2% 15.4MB 

YOLOv5_C3SE 90.6% 85.6% 92.4% 58.6% 13.1MB 

YOLOv5_ECA 91.4% 86.1% 94.2% 60.0% 14.3MB 

YOLOv5_C3ECA 90.9% 85.1% 92.5% 60.6% 13.1MB 

YOLOv5_CBAM 94.1% 85.1% 93.4% 60.5% 14.5MB 

YOLOv5_C3CBAM 89.8% 85.3% 93.0% 60.1% 13.1MB 

YOLOv7 92.1% 88.1% 95.3% 66.7% 74.8MB 

YOLOv7_CBAM 93.1% 91.9% 96.1% 67.2% 74.8MB 

 

5 Conclusion 

Fruit detection and yield estimation have a significant impact on agricultural 

automation. Fastly and highly accurate fruit detection algorithms can aid harvesting 
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robots in performing their picking tasks efficiently. In this paper, we presented a 

YOLOv7-based method for detecting Kiwifruits in orchards, which combines CBAM 

mechanism with the original YOLOv7 model. The method improved the current 

YOLOv7 model, the best-performed model in the YOLO family. The addition of the 

CBAM module assists the model in increasing attention to the object and reducing 

attention to useless features. Our experimental results show that the improved YOLOv7 

model performed better than the original YOLOv7 in Kiwifruit detection. The results 

showcase the effectiveness of the improved algorithm. The future work in this research 

project is to reduce the model size and propose a highly accurate and lightweight 

improved Kiwifruit detection model. Meanwhile, tracking and counting of Kiwifruits 

in orchards will be achieved by combining multiobject tracking together to provide 

theoretical and technical references for further applications in practical scenarios 

[1][16] [35].  
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